WELCOME TO GRAPHICAL ADVENTURES & other By Pier94 
Picture

DUE PAROLE SULLA CHIMICA:


CHIMICA:


La chimica (dall'arabo "al kimiaa", الكيمياء) è la scienza o più precisamente quella branca delle scienze naturali, che interpreta e razionalizza la struttura, le proprietà e le trasformazioni della materia.

Lo studio della chimica ha interessato, anche per motivi pratici derivanti dalle sue applicazioni tecnologiche, le varie popolazioni dell'umanità fin dai tempi antichi. Dal II secolo a.C. si sviluppò, a partire dall'Egitto tolemaico, l'alchimia, un insieme di conoscenze sulla materia e le sue trasformazioni legate a convinzioni filosofiche edesoteriche; da essa derivò la chimica moderna (in seguito alla rivoluzione scientifica, e più precisamente alla rivoluzione chimica alla fine del XVIII secolo). Anche nel periodo seguente la chimica continuò ad evolversi, perché sempre nuove scoperte ne ampliarono i campi di interesse e i metodi impiegati.

Oggetto di studio della chimica sono le proprietà e le strutture dei costituenti della materia (atomimolecolecristalli e altri aggregati) e le loro interazioni reciproche, da cui hanno origine gli stati della materia.

Tale studio della materia non è limitato alle sue proprietà e struttura in un dato istante, ma riguarda anche le sue trasformazioni, dettereazioni chimiche.[2]

Sono studiati anche gli effetti di tali proprietà e interazioni tra i componenti della materia su quelle degli oggetti e della materia con cui comunemente abbiamo a che fare, e le relazioni tra di essi, il che determina un'ampia importanza pratica di tali studi. Si tratta quindi di un campo di studi molto vasto, i cui settori sono tradizionalmente suddivisi in base al tipo di materia di cui si occupano o al tipo di studio.

La conoscenza della struttura elettronica degli atomi è alla base della chimica convenzionale, mentre la conoscenza della struttura delnucleo atomico e delle sue trasformazioni spontanee ed indotte è alla base della chimica nucleare.

La rottura e la formazione dei legami tra gli atomi e le molecole sono responsabili della trasformazione della materia.

La chimica è anche stata definita come "la scienza centrale" (in inglese central science) perché connette le altre scienza naturali, come l'astronomia, la fisica, le scienze dei materiali, la biologia e la geologia.[3][4]


Visualizza la tavola periodica interattiva su http://www.ptable.com




ALCUNI CONCETTI FONDAMENTALI SULLA STORIA DELLA CHIMICA


Due erano le principali scuole di pensiero della filosofia naturale elaborata dai Greci:Democrito sosteneva che la natura fosse formata da corpuscoli indivisibili (gli atomi) che si uniscono e separano in uno spazio vuoto, mentre Aristotele ipotizzava la struttura continua della materia risultante dalla combinazione degli elementi acquaariaterra e fuoco.

Tra il II e V secolo d.C. si sviluppa ad Alessandria d'Egitto l'alchimia, che conservava le originifilosofiche unite a una forte connotazione esoterica. In questo contesto l'alchimista, o "mago naturale", si poneva come tramite tra macrocosmo e microcosmodivino e umano. Due erano gli obiettivi fondamentali degli alchimisti, da realizzare con l'ausilio della pietra filosofale: latrasmutazione dei metalli in oro, che corrispondeva anche all'elevazione verso la perfezione delle qualità spirituali umane, e la possibilità di curare ogni genere di malattia e creare la vita. Nel XVI secolo assumeva autonomia propria la branca definita iatrochimica, che ebbe i maggiori contributori in Paracelso e Jean Baptiste van Helmont e che si prefissava di correlare i processi chimici che avvengono all'interno dell'organismo umano con gli stati patologici e con i possibili rimedi.

Nella seconda metà del XVII secolo, con l'introduzione del metodo sperimentale da parte di Robert Boyle, si pongono le basi per lo sviluppo della chimica moderna. Lo spartiacque tra alchimia e chimica può essere considerato l'anno 1661, con l'uscita del libro di Boyle Il chimico scettico.

Successivamente il lavoro di Antoine Lavoisier, che enunciò per primo la legge della conservazione della massa e confutò la teoria del flogisto, segnò il definitivo superamento dell'alchimia. Nel 1807 Jöns Jacob Berzelius fu uno dei primi a utilizzare il termine "chimica organica" in riferimento alla chimica che caratterizzava i composti prodotti dal regno animale, contrapposti a quelli di origine minerale e di pertinenza della chimica inorganica; sarà Friedrich Wöhler nel 1828 a dimostrare che i composti organici possono essere ottenuti anche da sintesi in laboratorio, riuscendo a sintetizzare l'urea a partire da sostanze inorganiche.

Nel 1869 Dmitrij Mendeleev e Julius Lothar Meyer ordinarono gli elementi chimici sistemandoli all'interno della tavola periodica, disposti ordinatamente in base al loro peso atomico. Nel 1937 l'italiano Emilio Segrè scoprì il tecnezio, primo elemento chimico artificiale, e negli anni seguenti verranno sintetizzati artificialmente molti altri nuovi elementi che andranno ad arricchire la tavola periodica.

I LEGAMI CHIMICI E LE FORZE DI ATTRAZIONE INTERMOLECOLARE

Gli atomi possono legarsi fra loro, e la forza di natura elettrostatica che li unisce viene definita legame chimico. Tale legame, caratterizzato da intensità differente in relazione al composto a cui dà origine, è fondamentale nel conferire la particolare reattività e stabilità del composto stesso, nonché nel determinarne la struttura e geometria molecolare caratteristica.

Esistono poi forze intermolecolari, di minore intensità rispetto al legame chimico, che attraggono atomi e molecole fra di loro. Tali forze originano quello che viene comunemente definito legame chimico secondario e hanno un ruolo importante nel determinare lo stato fisico di una sostanza. Sono inoltre responsabili anche della struttura secondariaterziaria equaternaria delle proteine.

GLI STATI DI AGGREGAZIONE DELLA MATERIA 
I composti chimici possono presentarsi in diversi stati di aggregazione, tra cui solido, liquido, aeriforme (vapore o gas) ed infine plasma.

La temperatura di un corpo è direttamente legata al movimento microscopico (o meglio all'energia cinetica microscopica)[5] delle particelle elementari (molecole): in particolare a bassa temperatura le molecole sono attratte fra loro tramite legami più energetici, per cui l'unico moto a cui possono essere sottoposte è quello vibrazionale; lo stato della materia associato a questa condizione è lo stato solido.

All'aumentare della temperatura, le molecole acquistano energia in quanto sono legate da legami meno energetici, per cui hanno la capacità di esprimere tre tipologie di moto: traslazionale, rotazionale e vibrazionale; lo stato della materia associato a questa condizione è lo statoliquido.

Un ulteriore aumento di temperatura indebolisce ulteriormente i legami che intercorrono tra le molecole, per cui aumentano ulteriormente le distanze tra le molecole e quindi il volume occupato dall'intero sistema;[6] lo stato della materia associato a questa condizione è lo stato diaeriforme.

Infine, ionizzando un gas, otteniamo il plasma, che si ritiene costituisca il 99% della materia nell'Universo.

Si parla inoltre di "fase" per indicare una porzione omogenea di un sistema termodinamico. A seconda dello stato di aggregazione, si parla di "fase solida", "fase liquida" o "fase aeriforme". I concetti di "fase" e "stato di aggregazione" non vanno confusi: infatti un sistema può essere in un determinato stato di aggregazione ma presentare più fasi. Un esempio è dato dai liquidi immiscibili (come acqua e olio), che condividono lo stesso stato di aggregazione (cioè liquido) ma sono pertinenti a due fasi distinte (infatti l'olio se versato in un contenitore contenente acqua forma uno strato sulla superficie del liquido, diviso in maniera netta dall'acqua sottostante).

Un sistema composto da una singola fase è quindi omogeneo, mentre un sistema composto da più fasi è eterogeneo.

I COMPOSTI CHIMICI O LE MISCELE (MISCUGLI)

Quando gli atomi si legano fra loro in proporzioni definite e costanti si ottengono dei composti chimici (ad esempio l'acqua, H2O). I composti, oltre ad avere composizione chimica differente rispetto alle sostanze originarie che li hanno prodotti, hanno anche differenti proprietà chimiche e fisiche rispetto a tali sostanze.

I sistemi formati da più composti chimici sono detti miscele,[7] e possono essere a loro volta omogenei o eterogenei. Un particolare tipo di miscela omogenea sono le soluzioni, formate da un solvente (composto presente in quantità maggiore) e da uno o più soluti (composto presente in quantità minore).


REAZIONI CHIMICHE

Una reazione chimica è un processo chimico tramite il quale atomi, ioni o molecole che costituiscono le sostanze iniziali (chiamate reagenti) si combinano fra loro originando le sostanze finali (chiamate prodotti). La composizione e le proprietà chimico-fisiche dei prodotti sono differenti rispetto ai reagenti.

I reagenti prendono parte alla reazione secondo rapporti in massa ben stabiliti, in base al lorocoefficiente stechiometrico; la stechiometria di reazione permette di calcolare il quantitativo teorico di prodotti ottenibili.[8]

Una reazione che avviene producendo calore viene detta esotermica, mentre una reazione che avviene assorbendo calore dall'ambiente esterno viene detta endotermica.

Mentre la termochimica permette di stabilire se una data reazione può avvenire spontaneamente in determinate condizioni, la cinetica chimica si occupa di analizzare ilmeccanismo di reazione e di determinare se una data reazione chimica possa procedere con una velocità di reazione accettabile. Molte reazioni spontanee non avrebbero luogo senza la presenza di un catalizzatore, proprio perché presenterebbero altrimenti una velocità bassissima. La presenza del catalizzatore è necessaria a superare un "muro" energetico che impedisce alla reazione di avvenire. Una volta che la reazione è iniziata, può in certi casi "autoalimentarsi", per cui la presenza del catalizzatore non è più necessaria da un certo momento in poi. Un meccanismo simile avviene nelle reazioni di combustione: queste infatti hanno bisogno di un innesco iniziale per avere luogo (ad esempio una scintilla), ma una volta che la combustione ha avuto origine, si ha produzione di calore che autoalimenta la reazione stessa.

Alcuni esempi di reazioni chimiche sono:

C7H6O3 + C4H6O3 → C9H8O4 + C2H4O2La freccia verso destra (→) sta indicare il verso in cui la reazione avviene. In questo caso bisogna anche specificare le condizioni in cui si opera (tra cui temperatura e pressione), in quanto la reazione inversa (cioè da destra verso sinistra) può essere favorita per talune condizioni. Nel caso più generale, i reagenti (primo membro) e i prodotti (secondo membro) sono separati dal segno "=".

Il simbolo della freccia verso il basso (↓) indica una sostanza che precipita come corpo di fondo. La precipitazione però non avviene se le condizioni in cui si opera sono tali che da rendere la solubilità del prodotto nella soluzione molto elevata. Nella notazione chimica si utilizza talvolta anche il simbolo di una freccia verso l'alto (↑), ad indicare che il prodotto è gassoso alle condizioni in cui avviene la reazione.

EQUILIBRIO CHIMICO

L'equilibrio chimico è una condizione di equilibrio dinamico che si ha quando i prodotti di una reazione chimica reagiscono a loro volta fra loro riformando i reagenti di partenza.

Una reazione di equilibrio viene indicata utilizzando le doppie frecce che puntano in verso opposto (), invece di utilizzare la classica freccia che punta dai reagenti verso i prodotti. Un esempio è il seguente:

In teoria tutte le reazioni chimiche possono essere considerate di equilibrio, ma nella pratica comune quelle caratterizzate da valore dicostante di equilibrio molto alta sono considerate reazioni "a completamento" (cioè che avvengono verso una sola direzione). La costante d'equilibrio K è definita dal rapporto dell'operazione di moltiplicazione delle concentrazioni delle sostanze prodotte, ognuna elevata al proprio coefficiente stechiometrico, rispetto all'operazione di moltiplicazione delle concentrazioni delle sostanze reagenti, ognuna elevata al proprio coefficiente stechiometrico. Considerando l'esempio precedente di due reagenti e due prodotti, vale la relazione:

La costante di equilibrio K è una costante in condizioni di temperatura costante (e pressione costante, nel caso dei gas. La costante di equilibrio può essere espressa anche in termini di rapporti tra pressioni parziali o anche frazioni molari.

Leggi della chimica e della fisica [modifica]Animazione che spiega la legge di Boyle-MariotteAnimazione che spiega la prima legge di Gay-LussacTutte le reazioni chimiche e le trasformazioni fisiche avvengono secondo leggi chimico-fisiche. Di seguito viene presentato un elenco degli enunciati di alcune leggi di particolare importanza nell'ambito della chimica.

Picture

L' ATOMO


L'atomo (dal greco ἄτομος - àtomos -, indivisibile, unione di ἄ - a - [alfa privativo] + τομή - tomé - [divisione], così chiamato perché inizialmente considerato l'unità più piccola ed indivisibile della materia, risalente alla dottrina dei filosofi greci Leucippo, Democrito ed Epicuro, detta teoria dell'atomismo) è la più piccola parte di ogni elemento esistente in natura che ne conserva le caratteristiche chimiche. Verso la fine dell'Ottocento (con la scoperta dell'elettrone) fu dimostrato che l'atomo era divisibile, essendo a sua volta composto da particelle più piccole (alle quali ci si riferisce con il termine "subatomiche"). L'atomo risulta infatti costituito da neutroni, elettroni e protoni.

La teoria atomica è la teoria sulla natura della materia che afferma che tutta la materia sia costituita da unità elementari chiamati atomi.

La teoria atomica si applica agli stati della materia solido, liquido e gassoso, mentre è difficilmente correlabile allo stato plasmico, in cui elevati volumi di pressione e temperatura impediscono la formazione di atomi.

Atomismo 
I diversi ordini di grandezza della materia:
1. Materia (macroscopico)
2.Struttura molecolare (atomi)
3.Atomo (neutrone, protone, elettrone)
4.Elettrone
5.Quark
6.Stringhe

Già dal IV secolo a.C. alcuni filosofi greci (Leucippo, Epicuro e Democrito) e romani (Tito Lucrezio Caro), ipotizzarono che la materia non fosse continua, ma costituita da particelle minuscole e indivisibili, fondando così la "teoria atomica"; questa corrente filosofica[1] fondata da Leucippo venne chiamata "atomismo". Si supponeva che i diversi "atomi" fossero differenti per forma e dimensioni.

Democrito, nel IV secolo a.C., propose la "teoria atomica", secondo la quale la materia è costituita da minuscole particelle, diverse tra loro, chiamate atomi, la cui unione dà origine a tutte le sostanze conosciute. Queste particelle erano la più piccola entità e non potevano essere ulteriormente divise; per questo erano chiamate atomi (da ὰτωμος, in greco "indivisibile"). In contrasto con questa teoria, Aristotele, nello stesso periodo, nella teoria della continuità della materia, sostenne che una sostanza può essere suddivisa all'infinito in particelle sempre più piccole e uguali tra loro. Queste ipotesi rimasero tali in quanto non suffragate da un approccio scientifico e da metodologie basate sull'osservazione e sull'esperimento.

Il corpuscolarismo è il postulato del XIII secolo dell'alchimista Geber, secondo il quale tutti i corpi fisici posseggono uno strato interno ed esterno di particelle minuscole. La differenza con l'atomismo è che i corpuscoli possono essere divisi. Veniva per questo teorizzato che il Mercurio potesse penetrare nei metalli modificandone la struttura interna. Il corpuscolarismo rimase la teoria dominante per i secoli successivi. Ripresa da Descartes, tale teoria servì anche come base a Isaac Newton per sviluppare la teoria corpuscolare della luce.
Origine del modello scientifico [modifica]
Vari atomi e molecole rappresentati nella prima pagina di "A New System of Chemical Philosophy", di John Dalton, pubblicato nel 1808.

Solo all'inizio del XIX secolo (più precisamente nel 1808) John Dalton rielaborò e ripropose la teoria di Democrito fondando la teoria atomica moderna, con la quale diede una spiegazione ai fenomeni chimici, affermando che le sostanze sono formate dai loro componenti secondo rapporti ben precisi fra numeri interi (legge delle proporzioni multiple), ipotizzando quindi che la materia fosse costituita da atomi. Nel corso dei suoi studi, Dalton si avvalse delle conoscenze chimiche che possedeva (la legge della conservazione della massa, formulata da Antoine Lavoisier, e la legge delle proporzioni definite, formulata da Joseph Louis Proust) e formulò la sua teoria atomica, che espose nel libro A New System of Chemical Philosophy (pubblicato nel 1808). La teoria atomica di Dalton si fondava su cinque punti:

    * la materia è formata da piccolissime particelle elementari chiamate atomi, che sono indivisibili e indistruttibili;
    * gli atomi di uno stesso elemento sono tutti uguali tra loro;
    * gli atomi di elementi diversi si combinano tra loro (attraverso reazioni chimiche) in rapporti di numeri interi e generalmente piccoli, dando così origine a composti;
    * gli atomi non possono essere né creati né distrutti;
    * gli atomi di un elemento non possono essere convertiti in atomi di altri elementi.[2]

In definitiva questa è la definizione di atomo per Dalton: "Un atomo è la più piccola parte di un elemento che mantiene le caratteristiche fisiche di quell'elemento".

Questa viene considerata la prima teoria atomica della materia perché per primo Dalton ricavò le sue ipotesi per via empirica.



I primi modelli atomici 
L'esperimento di Rutherford: poche particelle alfa vengono deflesse dal campo elettrico del nucleo, la maggior parte di esse attraversa lo spazio vuoto dell'atomo.
L'atomo di Rutherford, con un nucleo formato da protoni (rossi) e neutroni (verdi) e con degli elettroni (blu) che gli orbitano intorno con orbite precise.

Con la scoperta della radioattività naturale, si intuì successivamente che gli atomi non erano particelle indivisibili, bensì erano oggetti composti da parti più piccole. Nel 1902, Joseph John Thomson propose il primo modello fisico dell'atomo[3]: aveva infatti provato un anno prima l'esistenza dell'elettrone. Egli immaginò che un atomo fosse costituito da una sfera fluida di materia caricata positivamente (protoni e neutroni non erano stati ancora scoperti) in cui gli elettroni (negativi) erano immersi (modello a panettone, in inglese plum pudding model), rendendo neutro l'atomo nel suo complesso.

Questo modello fu superato quando furono scoperte da Ernest Rutherford le particelle che formano il nucleo dell'atomo: il protone (dotato di carica positiva) e il neutrone (privo di carica elettrica). Nel 1911 Rutherford fece un esperimento cruciale, con lo scopo di convalidare il modello di Thomson. Egli bombardò un sottilissimo foglio di oro, posto fra una sorgente di particelle alfa e uno schermo. Le particelle, attraversando la lamina, lasciarono una traccia del loro passaggio sullo schermo. L'esperimento portò alla constatazione che i raggi alfa non venivano quasi mai deviati; solo l'1% dei raggi incidenti era deviato considerevolmente dal foglio di oro (alcuni venivano completamente respinti).
Sulla base di questo fondamentale esperimento, Rutherford propose un modello di atomo in cui quasi tutta la massa dell'atomo fosse concentrata in una porzione molto piccola, il nucleo (caricato positivamente) e gli elettroni gli ruotassero attorno così come i pianeti ruotano attorno al Sole (modello planetario).[4] L'atomo era comunque largamente composto da spazio vuoto, e questo spiegava il perché del passaggio della maggior parte delle particelle alfa attraverso la lamina. Il nucleo è così concentrato che gli elettroni gli ruotano attorno a distanze relativamente enormi, aventi un diametro da 10.000 a 100.000 volte maggiore di quello del nucleo. Rutherford intuì che i protoni da soli non bastavano a giustificare tutta la massa del nucleo e formulò l'ipotesi dell'esistenza di altre particelle, che contribuissero a formare l'intera massa del nucleo. Nel modello atomico di Rutherford non compaiono i neutroni, perché queste particelle furono successivamente scoperte da Chadwick nel 1932.

Il modello di Rutherford aveva incontrato una palese contraddizione con le leggi della fisica classica: secondo la teoria elettromagnetica, una carica che subisce una accelerazione emette energia sotto forma di radiazione elettromagnetica. Per questo motivo, gli elettroni dell'atomo di Rutherford, che si muovono di moto circolare intorno al nucleo, avrebbero dovuto emettere onde elettromagnetiche e quindi, perdendo energia, annichilire nel nucleo stesso (teoria del collasso), cosa che evidentemente non accade.[5] Inoltre un elettrone, nel perdere energia, potrebbe emettere onde elettromagnetiche di qualsiasi lunghezza d'onda, operazione preclusa nella teoria e nella pratica dagli studi sul corpo nero di Max Planck (e successivamente di Albert Einstein). Solo la presenza di livelli di energia quantizzati per quanto riguarda gli stati degli elettroni poteva spiegare i risultati sperimentali: la stabilità degli atomi rientra nelle proprietà spiegabili mediante la meccanica quantistica.


Bohr e la meccanica ondulatoria: l'atomo oggi 
Exquisite-kfind.png Per approfondire, vedi le voci modello atomico di Bohr, orbitale e equazione di Schrödinger.

Nel 1913 Niels Bohr propose una modifica concettuale al modello di Rutherford. Pur accettandone l'idea di modello planetario, postulò che gli elettroni avessero a disposizione orbite fisse, dette anche "orbite quantizzate", queste orbite possedevano un'energia quantizzata (ossia un'energia già prestabilita identificata da un numero detto numero quantico principale N) nelle quali gli elettroni non emettevano né assorbivano energia (questa infatti rimaneva costante): in particolare, un elettrone emetteva o assorbiva energia sotto forma di onde elettromagnetiche solo se effettuava una transizione da un'orbita all'altra, e quindi passava ad uno stato a energia minore o maggiore.[6] Ciò nonostante, il modello di Bohr-Sommerfeld si basava ancora su postulati e soprattutto funzionava bene solo per l'idrogeno: tutto ciò, alla luce anche del principio di indeterminazione introdotto da Heisenberg nel 1927, convinse la comunità scientifica che fosse impossibile descrivere esattamente il moto degli elettroni attorno al nucleo, motivo per cui ai modelli deterministici fino ad allora proposti si preferì ricercare un modello probabilistico, che descrivesse con buona approssimazione qualsiasi atomo. Ciò fu reso possibile grazie ai successivi risultati della meccanica ondulatoria. Nel 1932 fu scoperto il neutrone, per cui si pervenne presto ad un modello dell'atomo pressoché completo, in cui al centro vi è il nucleo, composto di protoni (elettricamente positivi) e neutroni (elettricamente neutri) ed attorno ruotano gli elettroni (elettricamente negativi).

Fu abbandonato il concetto di orbita e fu introdotto il concetto di orbitale. Secondo la meccanica quantistica non ha più senso infatti parlare di traiettoria di una particella: da ciò discende che non si può neanche definire con certezza dove un elettrone si trova in un dato momento. Ciò che si poteva conoscere era la probabilità di trovare l'elettrone in un certo punto dello spazio in un dato istante di tempo. Un orbitale quindi non è una traiettoria su cui un elettrone (secondo le idee della fisica classica) poteva muoversi, bensì una porzione di spazio intorno al nucleo definita da una superficie di equiprobabilità, ossia entro la quale c'è il 95% della probabilità che un elettrone vi si trovi. In termini più rigorosi, un orbitale è definito da una particolare funzione d'onda, l'equazione di Schrödinger, in tre variabili, i numeri quantici, ciascuna delle quali è associata rispettivamente all'energia, alla forma e all'orientamento nello spazio dell'orbitale. Fu Erwin Schrödinger (scopritore dell'Equazione di Schrödinger, per cui ha vinto il premio nobel per la fisica nel 1933) a ipotizzare la struttura dell'atomo come costituita da un nucleo centrale carico di energia positiva circondato da una nuvola di elettroni.

Alla luce delle ultime ricerche, sfruttando sofisticate e potenti apparecchiature elettroniche, è stato possibile determinare in modo più completo anche la struttura del nucleo. In particolare si è scoperto che i protoni e i neutroni sono a loro volta formati da particelle più piccole: i quark.


Componenti 

In particolare, l'atomo è composto da un nucleo carico positivamente e da un numero di elettroni,[7] carichi negativamente, che gli ruotano attorno senza un'orbita precisa (l'elettrone si dice quindi "delocalizzato"), nei cosiddetti "gusci elettronici". Il nucleo è composto da protoni, che sono particelle cariche positivamente e da neutroni, che sono particelle prive di carica: protoni e neutroni sono detti nucleoni. In proporzione, se il nucleo atomico fosse grande quanto una mela, gli elettroni gli ruoterebbero attorno ad una distanza pari a circa un chilometro; un nucleone ha massa quasi 1800 volte superiore a quella di un elettrone.

La tabella seguente riassume alcune caratteristiche delle tre particelle subatomiche anzidette:[8]
Particella Simbolo Carica Massa Note
Elettrone e- -1,6 × 10−19 C 9,1093826 × 10−31 kg (0,51099 891 MeV/C²) Scoperto da Thomson in base alle esperienze sui raggi catodici di William Crookes. Con l'esperimento della goccia d'olio Millikan ne determinò la carica.
Protone p+ 1,6 × 10−19 C 1,6726231 × 10−27 kg (9,3828 × 102 MeV/C²) Scoperto da Ernest Rutherford con l'esperimento dei raggi alfa, la sua esistenza fu ipotizzata già da Eugene Goldstein, lavorando con i raggi catodici.
Neutrone n 0 C 1,674 927 29 × 10−27 kg (9,39565 × 102 MeV/C²) Scoperto da James Chadwick, la sua esistenza fu desunta a partire da contraddizioni studiate prima da Walther Bothe, poi da Irène Joliot-Curie e Frédéric Joliot.
Rappresentazione schematica di un atomo di elio.
Attorno al nucleo, composto da due neutroni (in verde) e due protoni (in rosso), ruotano gli elettroni (in giallo).

Si definiscono due quantità per identificare ogni atomo:

    * Numero di massa (A): la somma del numero di neutroni e protoni nel nucleo
    * Numero atomico (Z): il numero dei protoni nel nucleo, che, allo stato neutro, corrisponde al numero di elettroni esterni ad esso.[9]

Per ricavare il numero dei neutroni si sottrae al numero di massa il numero atomico

Esiste una grandezza che ne quantifica la massa, definita peso atomico (più correttamente "massa atomica"), espresso nel SI in unità di massa atomica (o uma), dove una unità di massa atomica equivale alla dodicesima parte della massa di un atomo di carbonio-12 (12C). Il numero degli elettroni che ruotano attorno al nucleo è uguale al numero dei protoni nel nucleo: essendo le predette cariche di valore assoluto uguale, un atomo è normalmente elettricamente neutro e pertanto la materia è normalmente elettricamente neutra. Tuttavia esistono atomi che perdono o acquistano elettroni, ad esempio in virtù di una reazione chimica: la specie che ne deriva si chiama ione; gli ioni possono essere quindi di carica positiva o negativa.

Gli atomi aventi lo stesso numero atomico hanno le stesse proprietà chimiche: si è dunque convenuto a definirli appartenenti allo stesso elemento.

Due atomi possono differire anche nell'avere numero atomico uguale ma diverso numero di massa: simili atomi sono detti isotopi ed hanno medesime proprietà chimiche. Ad esempio l'atomo di idrogeno ha più isotopi: in natura infatti esso è presente in grande maggioranza come 1H (formato da un protone ed un elettrone) e in minore quantità da 2H (o deuterio[10], che è formato da un protone, un neutrone ed un elettrone) e 3H (o trizio, estremamente raro, formato da un protone, due neutroni ed un elettrone). Dal punto di vista chimico, idrogeno, deuterio e trizio presentano identiche proprietà, anche se recenti ricerche stanno rivelando una maggiore instabilità del deuterio nei composti.

Massa

Poiché la parte principale della massa di un atomo deriva dai protoni e neutroni, la massa totale di tali particelle in un atomo è chiamato numero di massa. Spesso come unità di massa atomica si usa la dodicesima parte della massa di un atomo di carbonio-12 (12C); tale unità è chiamata Dalton :(Da) e vale approssimativamente 1,66 · 10-27  kg.
Dimensione atomica [modifica]

Gli atomi non hanno un limite ben definito, per questa ragione le dimensioni sono normalmente descritte in termini delle distanze che i nuclei hanno quando due atomi sono uniti in un legame chimico. Per questa ragione il raggio varia con la posizione degli atomi nella tavola periodica degli elementi, il tipo di legame chimico, il numero di atomi vicini (il numero di coordinazione) e persino lo spin. Nella tavola periodica degli elementi la dimensione degli atomi tende ad aumentare quando ci si muove in basso lungo le colonne, mentre diminuisce andando da sinistra a destra. Di conseguenza l'atomo più piccolo è l'elio con un raggio di 32 pm, mentre uno degli elementi più grandi è il cesio con 225 pm di raggio. Queste dimensioni sono migliaia di volte più piccole della lunghezza d'onda della luce (400 – 700 nm) per questa ragione non possono essere visti con un microscopio ottico. Mentre possono essere visti con microscopi elettronici a trasmissione (TEM) o microscopi tunnel a scansione.

Alcuni esempi mostrano la piccola dimensione di un atomo. Il diametro di un tipico capello umano corrisponde a circa un milione di atomi di carbonio in fila. Una goccia d'acqua contiene 2 · 1021  atomi di ossigeno e 4 · 1021  atomi di idrogeno. Se una mela diventasse della dimensione della terra, gli atomi nella mela sarebbero approssimativamente delle dimensioni della mela originale.